 | Charles Davies - Navigation - 1837 - 336 pages
...AC :: sin C : sin B. THEOREM II. In any triangle, the sum of the two sides containing eithet angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. 58. Let ACB be a triangle : then will AB+AC:... | |
 | Euclid, James Thomson - Geometry - 1837 - 410 pages
...sine of a right angle is equal to the radius. PROP. III. THEOR. THE sum of any two sides of a triangle is to their difference, as the tangent of half the sum of the angles opposite to those sides, is to the tangent of half their difference. Let ABC be a triangle,... | |
 | Andrew Bell - Euclid's Elements - 1837 - 290 pages
...demonstrated that AB : BC = sin C : sin A. PROPOSITION VI. THEOREM. The sum of two sides of a triangle is to their difference as the tangent of half the sum of me angles at the base to the tangent of half their difference. Let ABC be any triangle, then if B and... | |
 | Jeremiah Day - Geometry - 1838 - 416 pages
...THE OPPOSITE ANGLES ; To THE TANGENT OF HALF THEIR DIFFERENCE. Thus, the sum of AB and AC, (Fig. 25.) is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half their difference. Demonstration . Extend CA to G, making... | |
 | Thomas Keith - 1839 - 498 pages
...are to each other as the chords of double their opposite angles. PROPOSITION IV. (115) In any plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of their opposite angles is to the tangent of half their difference, Let ABC be any triangle ; make BE... | |
 | Charles Davies - Surveying - 1839 - 376 pages
...AC :: sin C : 'sin B. THEOREM II. In any triangle, the sum of the two sides containing eithei angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. 53. Let ACB be a triangle : then will AB+AC:... | |
 | Jeremiah Day - Geometry - 1839 - 432 pages
...THE OPPOSITE ANGLES J To THE TANGENT OF HALF THEIR DIFFERENCE. Thus, the sum of AB and AC, (Fig. 25.) is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half their difference. Demonstration. Extend CA to G, making... | |
 | Charles Davies - Surveying - 1839 - 376 pages
...AC :: sin C : sin B. THEOREM II. In any triangle, the sum of the two sides containing eithei angk, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of haJ/ their difference. 58. Let ACB be a triangle : then will AB+AC:... | |
 | Roswell Park - Best books - 1841 - 626 pages
...an oblique angled triangle, the sides are proportional to the sines of the opposite angles : also, the sum of any two sides is to their difference, as the tangent of the half sum of the two opposite angles, is to the tangent of their half difference : and finally,... | |
 | Charles Davies - Navigation - 1841 - 414 pages
...AC : : sin C : sin B. THEOREM II. In any triangle, the sum of the two sides containing eithei angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. 58. Let ACB be a triangle : then will AB+AC:... | |
| |