| John Bonnycastle - Trigonometry - 1806 - 464 pages
...others were taken. In the second method, having stated the proportion, according to the proper rule, multiply the second and third terms together, and divide the product by the first, and the quotient will be the fourth term required, for the natural numbers. Or, in working by logarithms,... | |
| James Thompson - Arithmetic - 1808 - 180 pages
...first term ; and that which is of the same name or quality with the answer required, the second term. Then multiply the second and third terms together, and divide the product by the first. The quotient will be the fourth term or answer, in the same name or denomination as the second term... | |
| Zachariah Jess - Arithmetic - 1810 - 222 pages
...requiring less. RULE. Multiply the second and third terms together, and divide the produit by the first ; the quotient will be the fourth term, or answer : in the same name with the second. PROOF. Invert the question, beginning with the answer ; and the result will be... | |
| Robert Gibson - Surveying - 1811 - 578 pages
...be as much greater, or less than the third, as the second term is greater, or less than the first, then multiply the second and third terms together, and divide the product by the first term, and the quotient will be the answer ; — in the same denomination with the third term. EXAMPLES. If... | |
| Arithmetic - 1811 - 210 pages
...either ; and if the second term consist of several denominations, reduce it to the lowest thereof: then multiply the second and third terms together, and divide the product by the first ; the' quotient will be the fourth term, or answer, in the same denomination as the second, or that... | |
| Francis Nichols - Plane trigonometry - 1811 - 162 pages
...analogy be formed according to the proper rule above delivered; then, if the natural numbers be used, multiply the second and third terms together, and divide the product by the first; the quotient will be the fourth term required. If logarithms be used, add the logarithms of the second... | |
| Oliver Welch - Arithmetic - 1812 - 236 pages
...same denomination ; and reduce the middle number, or term, into the lowest denomination mentioned : then multiply the second and third terms together, and divide the product by the first ; the quotient will be the answer, or fourth term sought ; and always will be of the same depomiiuition... | |
| John Gough - Arithmetic - 1813 - 358 pages
...fraction must be of th« same name or kind, and reduced to fractions of the same name or denominator. Multiply the second and third terms together and divide the product by the first; the quotient is the fourth term required ; due regard being had to the rules laid down for multiplying,... | |
| Roswell Chamberlain Smith - 1814 - 300 pages
...yoj proceed in the operation f -Л. Multiply the second and third terms to* gether, and divide their product by the first term ; the quotient will be the fourth term, or answer, in the same denomination with the third term. Q. How may this process of multiplying and dividing be, ш том •es, materially... | |
| Charles Butler - Mathematics - 1814 - 536 pages
...in either. Likewise the second term must be reduced to the lowest denomination mentioned in it. IV. Multiply the second and third terms together, and divide the product by the first ; the quotient will be the fourth term, or answer, in the same denomination into which the second term... | |
| |